Let's analyze cluster data and implement unsupervised machine learning algorithms using Python for pattern recognition in unlabeled datasets.
Working with pandas, seaborn, and numpy to discover patterns in unlabeled data through clustering algorithms, achieving higher accuracy through visualization.
Clustering groups data points by similarities. K-Means partitions data into K clusters by minimizing variance within each cluster.
# K-Means Clustering Demo
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
n_clusters = 4
X, _ = make_blobs(n_samples=333, centers=n_clusters, cluster_std=0.60, random_state=0)
kmeans = KMeans(n_clusters=n_clusters, random_state=0, max_iter=111).fit(X)
plt.figure(figsize=(10, 6))
plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_, s=25, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
c='red', s=100, marker='X', label='Centroids')
plt.title("π§ K-Means Clustering Results")
plt.legend()
plt.show()
Discover relationships between variables in large datasets. Used in market basket analysis and recommendation systems.